How do you evaluate cos ((7 pi)/3 + (15 pi)/4)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer A. S. Adikesavan Jun 4, 2016 =(sqrt 3+1)/(2 sqrt 2) Explanation: cos ((7pi)/3+(15pi)/4) =cos (2pi+pi/3 + 4pi-pi/4) =cos(6pi+(pi/3--pi/4)) =cos (pi/3-pi/4) =cos(pi/3)cos(pi/4)+sin(pi/3)sin(pi/4) =(1/2)(1/sqrt 2)+(sqrt 3/2)(1/sqrt 2) =(sqrt 3+1)/(2 sqrt 2) Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 1471 views around the world You can reuse this answer Creative Commons License