How do you evaluate cos[ (5pi) / 8 ]?

1 Answer
Jan 8, 2016

cos ((5pi)/8) = - (sqrt(2 - sqrt2))/2

Explanation:

cos ((5pi)/8) = cos ((-3pi)/8 + pi) = -cos ((3pi)/8)
Find cos ((3pi)/8). Call cos x = cos ((3pi)/8)
cos 2x = cos ((3pi)/4) = -sqrt2/2
Apply the trig identity: cos 2x = 2cos^2 x - 1. We get:
2cos^2 x = 1 - sqrt2/2 = (2 - sqrt2)/2
cos^2 x = (2 - sqrt2)/4
cos x = cos ((3pi)/8) = +- (sqrt(2 - sqrt2))/2
Finally,
cos ((5pi)/8) = - cos ((3pi)/8) = - (sqrt(2 - sqrt2)/2)

Check by calculator.
cos ((5pi)/8) = cos 112^@5 = - 0.38
-(sqrt(2 - sqrt2)/2) = 0.768/2 = - 0.38. OK