How do you evaluate #cos^2(pi/3)-cot(pi/4)+sin(pi/6 )#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer P dilip_k May 7, 2016 #=1/4# Explanation: To evaluate #cos^2(pi/3)-cot(pi/4)+sin(pi/6 )# As we know from table #cos(pi/3)=sqrt3/2,cot(pi/4)=1 &sin(pi/6 )=1/2# #cos^2(pi/3)-cot(pi/4)+sin(pi/6 )# #=>(sqrt3/2)^2-1+1/2# #=>3/4-1+1/2=(3-4+2)/4=1/4# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 3470 views around the world You can reuse this answer Creative Commons License