cos ((13pi)/8) = cos ((3pi)/8 + cos ((16pi)/8)) = cos ((3pi)/8 + 2pi) = = cos ((3pi)/8).
Evaluate cos ((3pi)/8) by applying the trig identity: cos 2a = 2cos^2 a - 1.
In this case, we get --> 2cos^2 ((3pi)/8) - 1 = cos ((6pi)/8) = cos ((3pi)/4) = -sqrt2/2 2cos^2 ((3pi)/8) = 1 - sqrt2/2 = (2 - sqrt2)/2 cos^2 ((3pi)/8) = (2 - sqrt2)/4 cos ((3pi)/8) = +- sqrt(2 - sqrt2)/2 cos ((13pi)/8) = cos ((3pi)/8) = sqrt(2 - sqrt2)/2 , because cos ((3pi)/8) is positive.