How do you evaluate #3cos((17pi)/6)+2cos((-5pi)/3 )#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer A. S. Adikesavan Dec 1, 2016 #(-3sqrt3+2)/2=-1.2132, #nearly. Explanation: Use #cos (-a) = cos a# and cosine is negative in #Q_2# and positive in #Q_4#. #3 cos (17/6pi)+ 2 cos (-5/3pi)# #=3 cos (3pi-pi/6) + 2 cos(-(2pi-pi/3))# #=-3cos (pi/6)+2cos(2pi-pi/3)# #=-3 cos (pi/6)+2cos(pi/3)# #=(-3sqrt3+2)/2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 1339 views around the world You can reuse this answer Creative Commons License