How do you evaluate (1+cos(pi/8))(1+cos((3pi)/8))(1+cos((5pi)/8))(1+cos((7pi)/8))?

1 Answer
Dec 11, 2016

(1+cos(pi/8))(1+cos((3pi)/8))(1+cos((5pi)/8))(1+cos((7pi)/8))

=(1+cos(pi/8))(1+sin(pi/2-(3pi)/8))(1+sin(pi/2-(5pi)/8))(1+cos(pi-pi/8))

=(1+cos(pi/8))(1+sin(pi/8))(1-sin(pi/8))(1-cos(pi/8))

=(1-cos^2(pi/8))(1-sin^2(pi/8))

=sin^2(pi/8)cos^2(pi/8)

=1/4xx(2sin(pi/8)cos(pi/8))^2

=1/4xxsin^2((2pi)/8)

=>1/4xxsin^2(pi/4)

=1/4xx(1/sqrt2)^2

=1/8