#Z= (9+i)/(-2+i) = ((9+i)(-2-i))/((-2+i)(-2-i)) #
# =(-18-11i-i^2)/((-2)^2-i^2) = (-17-11i)/(4+1) = -17/5-11/5i#
#= -3.4 -2.2i ; [i^2=-1]#
Modulus #|Z|=r=sqrt((-3.4)^2+ (-2.2)^2) =4.05 # ;
#tan alpha =b/a= (-2.2)/-3.4 = 0.647 :. alpha =tan^-1(0.647) = 0.574#
#theta# is on #3rd# quadrant # :. theta= alpha+pi=0.574+pi= 3.72#;
#theta# expressed in radian.
Argument : # theta =3.72 :. # In trigonometric form expressed as
#r(cos theta=isintheta) = 4.05(cos 3.72+isin3.72) :.#
# (9+i)/(-2+i) = 4.05(cos 3.72+isin3.72) # [Ans]