How do you divide ( -i+8) / (2i +7 ) in trigonometric form?

1 Answer

1/53(54-23i)

Explanation:

We have

\frac{-i+8}{2i+7}

=\frac{8-i}{7+2i}

=\frac{\sqrt{65}(\cos(-\tan^{-1}(1/8))+i\sin(-\tan^{-1}(1/8)))}{\sqrt{53}(\cos(\tan^{-1}(2/7))+i\sin(\tan^{-1}(2/7)))}

=\sqrt{\frac{65}{53}}(\cos(-\tan^{-1}(1/8)-\tan^{-1}(2/7))+i\sin(-\tan^{-1}(1/8)-\tan^{-1}(2/7)))

=\sqrt{\frac{65}{53}}(\cos(-\tan^{-1}(23/54))+i\sin(-\tan^{-1}(23/54)))

=\sqrt{\frac{65}{53}}(54/\sqrt3445-i23/\sqrt{3445})

=\sqrt{\frac{65}{53\times 3445}}(54-23i)

=1/53(54-23i)