We have
\frac{-i+8}{2i+7}
=\frac{8-i}{7+2i}
=\frac{\sqrt{65}(\cos(-\tan^{-1}(1/8))+i\sin(-\tan^{-1}(1/8)))}{\sqrt{53}(\cos(\tan^{-1}(2/7))+i\sin(\tan^{-1}(2/7)))}
=\sqrt{\frac{65}{53}}(\cos(-\tan^{-1}(1/8)-\tan^{-1}(2/7))+i\sin(-\tan^{-1}(1/8)-\tan^{-1}(2/7)))
=\sqrt{\frac{65}{53}}(\cos(-\tan^{-1}(23/54))+i\sin(-\tan^{-1}(23/54)))
=\sqrt{\frac{65}{53}}(54/\sqrt3445-i23/\sqrt{3445})
=\sqrt{\frac{65}{53\times 3445}}(54-23i)
=1/53(54-23i)