How do you divide #( -i+2) / (i +4 )# in trigonometric form?

1 Answer
Oct 21, 2016

#= 1/ (17) (7 - 6 i)#

Explanation:

In trig form we have

#(R_1 e^(i theta_1))/(R_2 e^(i theta_2))#

#= (R_1)/(R_2) e^(i (theta_1- theta_2))#

#R_1 = sqrt ( (2)^2 + (-1)^2) = sqrt 5#

#R_2 = sqrt (4^2 + 1^2) = sqrt 17#

#tan theta_1 = - 1/2#

#tan theta_2 = 1/4#

From
#tan(alpha-beta) = (tanalpha-tanbeta)/(1+tanalphatanbeta)#

#tan (theta_1 - theta_2) =( (-1/2) - 1/4 ) / ( 1 + (-1/2)1/4 ) = - 6/7#

Which means that #cos (theta_1 - theta_2) = 7 / sqrt 85# and #sin (theta_1 - theta_2) = -6 / sqrt 85#

So

#(R_1 e^(i theta_1))/(R_2 e^(i theta_2))#

#= (sqrt 5)/(sqrt 17) e^(i (arctan -6/7))#

#= (sqrt 5)/(sqrt 17) ( 7 / sqrt 85 - i 6 / sqrt 85 ) #

#= 1/ (17) (7 - 6 i)#

It's a lot simpler by finding the complex conjugate of the denominator #d^prime# and multiply the whole thing by the by #(d^\prime) / (d^prime)#. As follows

#(2 - i)/(4 + i) * (4 - i)/(4 - i)#

#= (8 - 2i - 4 i -1)/(16 - 4i + 4 i + 1)#

#= (7 - 6 i)/(17)#

#= 1/ (17) (7 - 6 i)#