How do you divide (8+7i)/(1-5i) 8+7i15i in trigonometric form?

1 Answer
Jun 15, 2018

color(brown)(=> 2.08 (-0.5014 + i 0.787)2.08(0.5014+i0.787)

Explanation:

z_1/ z_2 = (r_1 / r_2 ) (cos(theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z_1 = 8 + i 7, z-2 = 1 - i 5z1=8+i7,z2=1i5

r_1 = sqrt(8^2 + 7^2) = sqrt113r1=82+72=113

theta_1 = arctan (7/6) = 49.4^@θ1=arctan(76)=49.4

r_2 = sqrt(1^2 + 5^2) = sqrt26r2=12+52=26

theta_2 = arctan (-5/1) = 281.31^@, " IV Quadrant" θ2=arctan(51)=281.31, IV Quadrant

z_1 / z_2 = sqrt(113/26) (cos (49.4 - 281.31) + i sin(49.4 - 281.31)z1z2=11326(cos(49.4281.31)+isin(49.4281.31)

color(brown)(=> 2.08 (-0.5014 + i 0.787)2.08(0.5014+i0.787)