z_1/ z_2 = (r_1 / r_2 ) (cos(theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(r1r2)(cos(θ1−θ2)+isin(θ1−θ2))
z_1 = 8 + i 7, z-2 = 1 - i 5z1=8+i7,z−2=1−i5
r_1 = sqrt(8^2 + 7^2) = sqrt113r1=√82+72=√113
theta_1 = arctan (7/6) = 49.4^@θ1=arctan(76)=49.4∘
r_2 = sqrt(1^2 + 5^2) = sqrt26r2=√12+52=√26
theta_2 = arctan (-5/1) = 281.31^@, " IV Quadrant" θ2=arctan(−51)=281.31∘, IV Quadrant
z_1 / z_2 = sqrt(113/26) (cos (49.4 - 281.31) + i sin(49.4 - 281.31)z1z2=√11326(cos(49.4−281.31)+isin(49.4−281.31)
color(brown)(=> 2.08 (-0.5014 + i 0.787)⇒2.08(−0.5014+i0.787)