Start from the given complex number
(8-2i)/(5-3i)
Convert the numerator
r_1=sqrt(8^2+(-2)^2)=sqrt68
theta_1=tan^-1 ((-2)/8)=tan^-1 ((-1)/4)
then
8-2i=sqrt68[cos(tan^-1 ((-1)/4))+isin(tan^-1 ((-1)/4))]
Convert the denominator
r_2=sqrt(5^2+(-3)^2)=sqrt34
theta_2=tan^-1 ((-3)/5)=tan^-1 ((-3)/5)
then
5-3i=sqrt34[cos(tan^-1 ((-3)/5))+isin(tan^-1 ((-3)/5))]
Let us divide now, from the given with the equivalent
(8-2i)/(5-3i)=(sqrt68[cos(tan^-1 ((-1)/4))+isin(tan^-1 ((-1)/4))])/(sqrt34[cos(tan^-1 ((-3)/5))+isin(tan^-1 ((-3)/5))])
Divide using the following formula
(r_1/r_2)*[cos (theta_1-theta_2)+isin(theta1-theta_2)]
(8-2i)/(5-3i)=
sqrt(68/34)[cos(tan^-1 ((-1)/4)-tan^-1 ((-3)/5))+isin(tan^-1 ((-1)/4)-tan^-1 ((-3)/5))]
Take note: that
tan (theta_1-theta_2)=(tan theta_1-tan theta_2) /(1+tan theta_1*tan theta_2)=(-1/4-(-3/5))/(1+(-1/4)*(-3/5))
tan (theta_1-theta_2)=7/23
theta_1-theta_2=tan^-1 (7/23)
and
(8-2i)/(5-3i)=sqrt2(cos(tan^-1 (7/23))+isin(tan^-1 (7/23))
Have a nice day!!!.