How do you divide (8-2i) / (5-3i) in trigonometric form?

1 Answer

sqrt2(cos(tan^-1 (7/23))+isin(tan^-1 (7/23)) OR

sqrt2(cos(16.9275^@)+isin(16.9275^@))

Explanation:

Start from the given complex number

(8-2i)/(5-3i)

Convert the numerator

r_1=sqrt(8^2+(-2)^2)=sqrt68

theta_1=tan^-1 ((-2)/8)=tan^-1 ((-1)/4)

then

8-2i=sqrt68[cos(tan^-1 ((-1)/4))+isin(tan^-1 ((-1)/4))]

Convert the denominator

r_2=sqrt(5^2+(-3)^2)=sqrt34

theta_2=tan^-1 ((-3)/5)=tan^-1 ((-3)/5)

then

5-3i=sqrt34[cos(tan^-1 ((-3)/5))+isin(tan^-1 ((-3)/5))]

Let us divide now, from the given with the equivalent

(8-2i)/(5-3i)=(sqrt68[cos(tan^-1 ((-1)/4))+isin(tan^-1 ((-1)/4))])/(sqrt34[cos(tan^-1 ((-3)/5))+isin(tan^-1 ((-3)/5))])

Divide using the following formula

(r_1/r_2)*[cos (theta_1-theta_2)+isin(theta1-theta_2)]

(8-2i)/(5-3i)= sqrt(68/34)[cos(tan^-1 ((-1)/4)-tan^-1 ((-3)/5))+isin(tan^-1 ((-1)/4)-tan^-1 ((-3)/5))]

Take note: that
tan (theta_1-theta_2)=(tan theta_1-tan theta_2) /(1+tan theta_1*tan theta_2)=(-1/4-(-3/5))/(1+(-1/4)*(-3/5))

tan (theta_1-theta_2)=7/23

theta_1-theta_2=tan^-1 (7/23)

and

(8-2i)/(5-3i)=sqrt2(cos(tan^-1 (7/23))+isin(tan^-1 (7/23))

Have a nice day!!!.