How do you divide # (-4-9i)/(6-2i) # in trigonometric form?

1 Answer
Apr 19, 2018

#" "#
#color(blue)(z=(sqrt(970))/20)color(blue)([cos 264^@ + i* sin 264^@]#

Explanation:

#" "#
Let #color(red)(Z_1 = r_1(Cos theta_1 + i*sin theta_1)#

Let #color(red)(Z_2 = r_2(Cos theta_2 + i*sin theta_2)#

#color(blue)((Z_1/Z_2) = (r_1/r_2)[cos (theta_1 - theta_2)+i*sin(theta_1 - theta_2)]#

Consider the problem given:

#color(green)(Z_1 = (-4-9i)# and

#color(green)(Z_2 = (6-2i)#

In complex numbers,

we know that #i=sqrt(-1) and i^2=(-1)#

#Z_1/Z_2=(-4-9i)/(6-2i)#

Multiply and divide by the Conjugate of the denominator to simplify.

#Z_1/Z_2=(-4-9i)/(6-2i)*color(red)((6+2i)/(6+2i)#

#rArr [-24-8i-54i-18(i^2)]/(36-(2i)^2#

#rArr [-24-62i+18]/[(36+4)]#

#rArr (-62i-6)/40#

#rArr (2(-31i-3))/(2*20)#

#rArr (cancel 2(-31i-3))/(cancel 2*20)#

#rArr (-3-31i)/20#

#color(blue)( :. Z_1/Z_2= -(3/20)-(31/20)i#

enter image source here

Express #color(blue)(r# in terms of #color(blue)(a and b#.

Using Pythagoras Theorem,

#r^2=(a^2+b^2)#

#r=sqrt(a^2+b^2)#

#|z|=a+bi#

#|z| = sqrt(a^2+b^2#

#sin(theta)=b/r#

#rArr color(red)( b=r*sin(theta)#

#cos(theta) = a/r#

#rArr color(red)( a=r*sin(theta)#

We already have

#color(blue)( Z_1/Z_2= -(3/20)-(31/20)i#

#|z|=sqrt((-3/20)^2+(-31/20)^2#

Simplifying you get

#rArr sqrt(970/400#

#rArr sqrt(970)/20#

To find #color(red)(theta#

#theta = tan^-1[(-31/20)/(-3/(20)]]#

Using the calculator to simplify, you get

#theta ~~ 84.47245985^@#

# :. theta ~~ 84.5^@#

You have to add 180 to the angle when you recognize that the angle lies in the third quadrant.

Hence #theta ~~84.5^@ + 180^@#

#rArr theta ~~ 264^@#

Hence, the final representation of #Z# will be

#color(red)(Z=sqrt(970)/20[cos(264^@)+i*sin(264^@)]#

Hope it helps.