How do you divide (-4+9i)/(1-5i) in trigonometric form?

1 Answer
Jul 17, 2017

(-4+9i)/(1-5i)=1/26sqrt2522(cos167-isin167)

Explanation:

(-4+9i)/(1-5i)=((-4+9i)(1+5i))/((1-5i)(1+5i))=(-4-11i-45)/(26)=(-11i-49)/26=-49/26-11/26i

Trigonometric form of a complex number:

a+bi=r(cosvartheta+isinvartheta), where r=sqrt(a^2+b^2) and vartheta=arctan(b/a)

sqrt(49/26^2+11/26^2)=1/26sqrt2522

arctan((-11/26)/(-49/26))approx-167^@

therefore-49/26-11/26i=1/26sqrt2522(cos(-167)+isin(-167))

which can be rewritten as 1/26sqrt2522(cos167-isin167)