Let us first write #(3i+8)# and #(i+4)# in trigonometric form.
#a+ib# can be written in trigonometric form #re^(itheta)=rcostheta+irsintheta=r(costheta+isintheta)#,
where #r=sqrt(a^2+b^2)# and #tantheta=b/a# or #theta=arctan(b/a)#
Hence #3i+8=(8+3i)=sqrt(8^2+3^2)[cosalpha+isinalpha]# or
#sqrt73e^(ialpha)#, where #tanalpha=3/8# and
#i+4=(4+i)=sqrt(4^2+1^2)[cosbeta+isinbeta]# or
#sqrt17e^(ibeta]#, where #tanbeta=1/4#
Hence #(3i+8)/(i+4)=(sqrt73e^(ialpha))/(sqrt17e^(ibeta])=sqrt(73/17)e^(i(alpha-beta))=sqrt(73/17)(cos(alpha-beta)+isin(alpha-beta))#
Now, #tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)#
= #(3/8-1/4)/(1+3/8*1/4)=(1/8)/(1+3/32)=1/8*32/35=4/35#
Hence #(6i-4)/(-3i-5)=sqrt(73/17)(cosrho+isinrho)# where #rho=tan^(-1)(4/35)#