How do you divide (-3-4i)/(5+2i) 34i5+2i in trigonometric form?

1 Answer
Apr 26, 2018

5/sqrt(29)(cos(0.540)+isin(0.540))~~0.79+0.48i529(cos(0.540)+isin(0.540))0.79+0.48i

Explanation:

(-3-4i)/(5+2i)=-(3+4i)/(5+2i)34i5+2i=3+4i5+2i

z=a+biz=a+bi can be written as z=r(costheta+isintheta)z=r(cosθ+isinθ), where

  • r=sqrt(a^2+b^2)r=a2+b2
  • theta=tan^-1(b/a)θ=tan1(ba)

For z_1=3+4iz1=3+4i:
r=sqrt(3^2+4^2)=5r=32+42=5
theta=tan^-1(4/3)=~~0,927θ=tan1(43)=0,927

For z_2=5+2iz2=5+2i:
r=sqrt(5^2+2^2)=sqrt29r=52+22=29
theta=tan^-1(2/5)=~~0.381θ=tan1(25)=0.381

For z_1/z_2z1z2:
z_1/z_2=r_1/r_2(cos(theta_1-theta_2)+isin(theta_1-theta_2))z1z2=r1r2(cos(θ1θ2)+isin(θ1θ2))

z_1/z_2=5/sqrt(29)(cos(0.921-0.381)+isin(0.921-0.381))z1z2=529(cos(0.9210.381)+isin(0.9210.381))

z_1/z_2=5/sqrt(29)(cos(0.540)+isin(0.540))=0.79+0.48iz1z2=529(cos(0.540)+isin(0.540))=0.79+0.48i

Proof:
-(3+4i)/(5+2i)*(5-2i)/(5-2i)=-(15+20i-6i+8)/(25+4)=(23+14i)/29=0.79+0.48i3+4i5+2i52i52i=15+20i6i+825+4=23+14i29=0.79+0.48i