Let us write the two complex numbers in polar coordinates and let them be
#z_1=r_1(cosalpha+isinalpha)# and #z_2=r_2(cosbeta+isinbeta)#
Here, if two complex numbers are #a_1+ib_1# and #a_2+ib_2# #r_1=sqrt(a_1^2+b_1^2)#, #r_2=sqrt(a_2^2+b_2^2)# and #alpha=tan^(-1)(b_1/a_1)#, #beta=tan^(-1)(b_2/a_2)#
Their division leads us to
#{r_1/r_2}{(cosalpha+isinalpha)/(cosbeta+isinbeta)}# or
#{r_1/r_2}{(cosalpha+isinalpha)/(cosbeta+isinbeta)xx(cosbeta-isinbeta)/(cosbeta-isinbeta)}#
#(r_1/r_2){(cosalphacosbeta+sinalphasinbeta)+i(sinalphacosbeta-cosalphasinbeta))/((cos^2beta+sin^2beta))# or
#(r_1/r_2)*(cos(alpha-beta)+isin(alpha-beta))# or
#z_1/z_2# is given by #(r_1/r_2, (alpha-beta))#
So for division complex number #z_1# by #z_2# , take new angle as #(alpha-beta)# and modulus the ratio #r_1/r_2# of the modulus of two numbers.
Here #2i-7=-7+2i# can be written as #r_1(cosalpha+isinalpha)# where #r_1=sqrt((-7)^2+2^2)=sqrt53# and #alpha=tan^(-1)(-2/7)#
and #3i-2=-2+3i# can be written as #r_2(cosbeta+isinbeta)# where #r_2=sqrt((-2)^2+3^2)=sqrt13# and #beta=tan^(-1)(-3/2)#
and #z_1/z_2=sqrt53/sqrt13(costheta+isintheta)#, where #theta=alpha-beta#
Hence, #tantheta=tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)=((-2/7)-(-3/2))/(1+(-2/7)xx(-3/2))=(-2/7+3/2)/(1+3/7)=(17/14)/(10/7)=17/14xx7/10=17/20#.
Hence, #(2i-7)/(3i-2)=sqrt(53/13)(costheta+isintheta)#, where #theta=tan^(-1)(17/20)#