How do you divide ( 2i-6) / ( -2i +4 ) in trigonometric form?

1 Answer
Jul 25, 2016

In trigonometric form Z=sqrt2[cos188.13+isin188.13]

Explanation:

LetZ=(2i-6)/(-2i+4)= ((2i-6)(4+2i))/((4+2i)(4-2i))= (4i^2-4i-24)/(16-4i^2) =(-4i-28)/20= -7/5-1/5i [since i^2=-1] Modulus Z=sqrt((-7/5)^2+(-1/5)^2) =sqrt2 Argument Z:theta=tan^-1(1/5/7/5)=tan^-1(1/7)=8.13^0+180^0=188.13^0[180^0 is added as it is on 3rd quadrant] Hence in trigonometric form Z=sqrt2[cos188.13+isin188.13][Ans]