How do you divide ( 2i-6) / ( -12i +4 )2i612i+4 in trigonometric form?

1 Answer
May 19, 2016

(2i-6)-:(-12i+4)=1/2(cosrho+isinrho)(2i6)÷(12i+4)=12(cosρ+isinρ) where rho=tan^(-1)(-5/3)ρ=tan1(53)

Explanation:

Let us first write (2i-6)(2i6) and (-12i+4)(12i+4) in trigonometric form.

a+iba+ib can be written in trigonometric form re^(itheta)=rcostheta+irsintheta=r(costheta+isintheta)reiθ=rcosθ+irsinθ=r(cosθ+isinθ),
where r=sqrt(a^2+b^2)r=a2+b2 and tantheta=b/atanθ=ba or theta=arctan(b/a)θ=arctan(ba)

Hence 2i-6=(-6+2i)=sqrt((-6)^2+2^2)[cosalpha+isinalpha]2i6=(6+2i)=(6)2+22[cosα+isinα] or

sqrt40e^(ialpha)40eiα, where tanalpha=(-1)/3tanα=13 and

-12i+4=(4-12i)=sqrt(4^2+(-12)^2)[cosbeta+isinbeta]12i+4=(412i)=42+(12)2[cosβ+isinβ] or

sqrt160e^(ibeta]160eiβ, where tanbeta=(-12)/4=-3tanβ=124=3

Hence (2i-6)-:(-12i+4)=(sqrt40e^(ialpha))/(sqrt160e^(ibeta])=sqrt(1/4)e^(i(alpha-beta))=e^(i(alpha-beta))/2=1/2(cos(alpha-beta)+isin(alpha-beta))(2i6)÷(12i+4)=40eiα160eiβ=14ei(αβ)=ei(αβ)2=12(cos(αβ)+isin(αβ))

Now, tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)tan(αβ)=tanαtanβ1+tanαtanβ

= (-1/3+(-3))/(1+(-1/3)*(-3))=(-10/3)/2=-5/313+(3)1+(13)(3)=1032=53

Hence (2i-6)-:(-12i+4)=1/2(cosrho+isinrho)(2i6)÷(12i+4)=12(cosρ+isinρ) where rho=tan^(-1)(-5/3)ρ=tan1(53)