How do you divide ( 2i-1) / ( -i -1 ) in trigonometric form?

1 Answer

\sqrt{5/2}(\cos108.435^\circ-\sin 108.435^\circ)

Explanation:

Given that

\frac{2i-1}{-i-1}

=\frac{1-2i}{1+i}

=\frac{(1-2i)(1-i)}{(1+i)(1-i)}

=\frac{1-3i+2i^2}{1-i^2}

=\frac{1-3i+2(-1)}{1+1}

=\frac{-1-3i}{2}

=-1/2-3/2i

Amplitude =\sqrt{(-1/2)^2+(-3/2)^2}=\sqrt{5/2}

Argument, \theta=-(\pi-\tan^{-1}|\frac{-3/2}{-1/2}|)

\theta=-108.435^\circ

\therefore \frac{2i-1}{-i-1}

=\sqrt{5/2}(\cos(-108.435^\circ)+i\sin(-108.435^\circ))

=\sqrt{5/2}(\cos108.435^\circ-\sin 108.435^\circ)