How do you differentiate y=xcsc^-1x?

1 Answer
Dec 10, 2017

(dy)/(dx)=csc^(-1)x+x^2/sqrt(x^2-1)

Explanation:

Let csc^(-1)x=t

then csct=x or sint=1/x and t=sin^(-1)(1/x)

as d/(dx)sin^(-1)u=1/sqrt(1-u^2)

d/(dx)csc^(-1)x=d/(dx)sin^(-1)(1/x)

= 1/sqrt(1-1/x^2)=x/sqrt(x^2-1)

Hence if y=xcsc^(-1)x

(dy)/(dx)=csc^(-1)x+x xx x/sqrt(x^2-1)

= csc^(-1)x+x^2/sqrt(x^2-1)