How do you differentiate y=tan^-1(5x)?
1 Answer
Oct 8, 2016
Explanation:
differentiate using the
color(blue)"chain rule"
color(red)(bar(ul(|color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))...... (A) let
u=5xrArr(du)/(dx)=5 and
y=tan^-1urArr(dy)/(du)=1/(1+u^2)
color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(d/dx(tan^-1x)=1/(1+x^2))color(white)(a/a)|))) substitute results into (A) and change u back into terms of x.
rArrdy/dx=1/(1+u^2)xx5=5/(1+25x^2)