How do you differentiate y=sin^-1(2x+1)?

1 Answer
Sep 12, 2016

dy/dx=1/sqrt(-x(x+1)).

Explanation:

It is known that d/dtsin^-1 t=1/sqrt(1-t^2).

Let (2x+1)=t

;. y=sin^-1 t, t=2x+1.

Thus, y is a function of t, and, t of x.

Therefore, by Chain Rule,

dy/dx=dy/dt*dt/dx..................(star)

Now, y=sin^-1t rArr dy/dt=1/sqrt(1-t^2)................(1)

t=2x+1 rArr dt/dx=2...............................................(2)

Using (1), (2)" in "(star), &, remembering that t=2x+1, we get,

dy/dx=(1/sqrt(1-t^2))(2)=2/sqrt(1-(2x+1)^2)=2/sqrt(1-4x^2-4x-1)

Therefore, dy/dx=1/sqrt(-x(x+1)).