How do you differentiate y=sec^-1(x^2)?

1 Answer
Jan 4, 2017

(dy)/(dx)=2/(xsqrt(x^4-1))

Explanation:

y=sec^(-1)x^2

=>x^2=secy

differentiate wrt x

2x=(dy)/(dx)secytany

(dy)/(dx)=(2x)/(secytany)

now substitute back using:

secy=x^2

sec^2y=1+tan^2y=>tany=sqrt(sec^2y-1

tany=sqrt(x^4-1)

(dy)/(dx)=(2x)/(x^2sqrt(x^4-1))=2/(xsqrt(x^4-1))