How do you differentiate y=sec^-1(4x)?

1 Answer
Apr 21, 2017

1/(x sqrt(16x^2 - 1))

Explanation:

sec(y(x)) = 4x => d/dx sec(y(x)) = 4

But

d/dx sec(y(x)) = sec^2(y(x)) * sin(y(x)) * y'(x)

So

y'(x) = 4/(sec^2(y(x)) * sin(y(x)))

But note that:

sec(y(x)) = 4x
sin(y(x)) = sqrt (1 - cos(y(x))^2) = sqrt (1-(1/(4x))^2)

Hence

y'(x) = 4/(sec^2(y(x)) * sin(y(x))) = 1/(x sqrt(16x^2 - 1))