How do you differentiate y=cos^-1(1-3x^2)?

1 Answer
Oct 26, 2016

dy/dx=(6x)/sqrt(6x-9x^2)

Explanation:

Easiest method is to rewrite;

y=cos^-1(1-3x^2) as cosy=1-3x^2

and to use implicit differentiation to give:
-sinydy/dx =-6x
:. sinydt/dx =6x
:. dy/dx =(6x)/siny

And using cos^2A+sin^2A-=1 => siny =sqrt(1-cos^2y)
:. siny =sqrt(1-(1-3x^2)^2)
:. siny =sqrt(1-(1-3x^2)^2)
:. siny =sqrt(1-(1-6x+9x^2))
:. siny =sqrt(1-1+6x-9x^2)
:. siny =sqrt(6x-9x^2)

And so, dy/dx=(6x)/sqrt(6x-9x^2)