How do you differentiate y=arcsin(x^2)y=arcsin(x2)?

1 Answer
Jan 29, 2017

dy/dx=(2x)/(sqrt(1-x^4))dydx=2x1x4

Explanation:

differentiate using the color(blue)"chain rule"chain rule

color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx(arcsin(f(x)))=1/(sqrt(1-f(x)^2)).f'(x))color(white)(2/2)|)))

y=arcsin(x^2)

rArrdy/dx=1/(sqrt(1-(x^2)^2)).d/dx(x^2)

=(2x)/(sqrt(1-x^4))