How do you differentiate y=arcsin(3x)/x?

1 Answer
Jan 15, 2018

y'=(3x-arcsin(3x)sqrt(1-9x^2))/(x^2sqrt(1-9x^2))

Explanation:

We will use the quotient rule:

d/dx[f(x)/g(x)]=y'=(f'(x)*g(x)-g'(x)*f(x))/(g(x))^2

But before that however, let's find the derivative of arcsin(3x)

--------------------

Let y=arcsin(3x)

Take the sines of both sides

sin(y)=3x

Differentiate both sides W.R.T x

dy/dx*cos(y)=3

Divide cos(y) to both sides

dy/dx=3/cos(y)

We now must rewrite in terms of x

Since , color(blue)(sin(y)=(3x)/1

Then, color(red)(cos(y)=sqrt(1-9x^2)/1=sqrt(1-9x^2)

:.dy/dx=(3)/sqrt(1-9x^2)

--------------------

Now finding the derivative:

Let f(x)=arcsin(3x) & g(x)=x

So f'(x)=3/sqrt(1-9x^2) & g'(x)=1

Substituting into the quotient rule we get:

y'=(3/sqrt(1-9x^2)*x-1*arcsin(3x))/(x)^2

Simplify:

y'=((3x)/sqrt(1-9x^2)-arcsin(3x))/x^2

Combine Fractions in the numerator:

color(blue)((3x)/sqrt(1-9x^2)-arcsin(3x)*(sqrt(1-9x^2)/sqrt(1-9x^2))

color(blue)((3x)/sqrt(1-9x^2)-(arcsin(3x)sqrt(1-9x^2))/sqrt(1-9x^2))

y'=((3x-arcsin(3x)sqrt(1-9x^2))/sqrt(1-9x^2))/x^2

Apply the fraction rule for further simplification

y'=(3x-arcsin(3x)sqrt(1-9x^2))/sqrt(1-9x^2)*1/x^2

y'=(3x-arcsin(3x)sqrt(1-9x^2))/(x^2sqrt(1-9x^2))