How do you differentiate the following parametric equation: # x(t)=te^t-2t, y(t)=-3t^3-2t^2+3t #? Calculus Parametric Functions Derivative of Parametric Functions 1 Answer Ratnaker Mehta Aug 11, 2016 #dy/dx=(9t^2+4t-3)/{2-(t+1)e^t}#. Explanation: Let #x=x(t), and, y=y(t)# be the given parametric eqns. Then, #dy/dx=(dy/dt)/(dx/dt), (dx)/(dt)!=0......(star)#. Now, #y(t)=-3t^3-2t^2+3t rArr dy/dt=-9t^2-4t+3.....(1)#. #x(t)=te^t-2t=t(e^t-2)#. #rArr x'(t)=t(e^t-0)+(e^t-2)1=(t+1)e^t-2........(2)#. Using #(1) & (2)# in #(star)#, we get, #dy/dx=(-9t^2-4t+3)/((t+1)e^t-2)=(9t^2+4t-3)/{2-(t+1)e^t}#. Answer link Related questions How do you find the second derivative of a parametric function? How do you find derivatives of parametric functions? How do you find #dy/dx# for the curve #x=t*sin(t)#, #y=t^2+2# ? How do you find the equation of the tangent to the curve #x=t^4+1#, #y=t^3+t# at the point... How do you find #(d^2y)/(dx^2)# for the curve #x=4+t^2#, #y=t^2+t^3# ? How do you find parametric equations of a tangent line? How do you find parametric equations for the tangent line to the curve with the given parametric... How do you find the equation of a line tangent to the curve at point #t=-1# given the parametric... How do you differentiate the following parametric equation: # x(t)=t^3-5t, y(t)=(t-3) #? How do you differentiate the following parametric equation: # x(t)=lnt, y(t)=(t-3) #? See all questions in Derivative of Parametric Functions Impact of this question 2366 views around the world You can reuse this answer Creative Commons License