How do you differentiate g(x) = 2arcsin(e^(3x)) ?

1 Answer
May 26, 2017

g'(x) = (6e^(3x))/sqrt(1-e^(6x))

Explanation:

Let g(x) = y

y= 2arcsin(e^(3x))

1/2y= arcsin(e^(3x))

sin(1/2y) = e^(3x)

(1/2cos(1/2y))(dy/dx) = 3e^(3x)

dy/dx = (6e^(3x))/cos(1/2y)

cos(1/2y) = sqrt(1-sin^2(1/2y)) = sqrt (1-e^(6x))

dy/dx = (6e^(3x))/sqrt(1-e^(6x))