How do you differentiate f(x)=xarctansqrtx?

1 Answer
Apr 4, 2018

=>arctan(sqrtx) + sqrt(x)/(2(1+x))

Explanation:

f(x) = x arctan (sqrtx)

f'(x) = (d(x))/(dx) arctan(sqrtx) + x (d(arctan(sqrtx)))/(dx)

= arctan(sqrtx) + x(1/(1+(sqrtx)^2))(d(sqrtx))/(dx)

= arctan(sqrtx) + x/(1+x)*1/(2sqrtx)

= arctan(sqrtx) + sqrt(x)/(2(1+x))