How do you differentiate f(x)=sin^-1(x^3)?

1 Answer
Feb 5, 2017

The answer is =(3x^2)/(sqrt(1-x^6))

Explanation:

Let y=sin^-1x^3

So,

siny=x^3

Differentiating wrt x

cosy(dy/dx)=3x^2

dy/dx=(3x^2)/(cosy)

But,

sin^2y+cos^2y=1

cos^2y=1-sin^2y=1-x^6

cosy=sqrt(1-x^6)

Therefore,

dy/dx=f'(x)=(3x^2)/(sqrt(1-x^6))