How do you differentiate f(x) = (1+x^2) arctanx ?
1 Answer
Jun 25, 2017
Explanation:
"differentiate using the "color(blue)"product rule"
"given " f(x)=g(x).h(x)" then"
f'(x)=g(x)h'(x)+h(x)g'(x)
g(x)=1+x^2rArrg'(x)=2x
h(x)=tan^-1xrArrh'(x)=1/(1+x^2)
rArrf'(x)=cancel((1+x^2)). 1/cancel((1+x^2))+2xtan^-1x
color(white)(rArrf'(x))=1+2xtan^-1x