How do you determine if # y = –6x^3 – 4# is an even or odd function?

1 Answer
Apr 24, 2016

#f(x) = -6x^3-4# is neither even nor odd.

Explanation:

A function #f(x)# is even if #f(-x) = f(x)# and is odd if #f(-x) = -f(x)#.

If #f(x) = -6x^3-4# then we have

#f(-x) = -6(-x)^3-4 = 6x^3-4#.

As #-f(x) = -(-6x^3-4) = 6x^3+4#, that means

#f(-x)!=f(x)# and #f(-x)!=-f(x)#

Thus #f(x) = -6x^3-4# is neither even nor odd.