How do you convert sqrt3 - 3i33i to polar form?

1 Answer
Mar 21, 2018

The answer is =sqrt12(cos(-1/3pi)+isin(-1/3pi))=12(cos(13π)+isin(13π))

Explanation:

Any complex number

z=a+ibz=a+ib

can be converted to the polar form

z=|z|(costheta+i sintheta)z=|z|(cosθ+isinθ)

Where,

costheta=a/(|z|)cosθ=a|z|

and

sintheta=b/(|z|)sinθ=b|z|

Here,

z=sqrt3-3iz=33i

|z|=sqrt((sqrt3)^2+(-3)^2)=sqrt12|z|=(3)2+(3)2=12

costheta=sqrt3/sqrt12=1/2cosθ=312=12

sintheta=-3/sqrt12=-sqrt3/(2)sinθ=312=32

Therefore,

theta=-pi/3θ=π3, [mod 2pi]

z=sqrt12(cos(-1/3pi)+isin(-1/3pi))