How do you convert #sqrt(3)i - 1# to polar form?
1 Answer
May 23, 2016
Explanation:
Using the formulae that links Cartesian to Polar coordinates.
#•r=sqrt(x^2+y^2)" and " theta=tan^-1(y/x)# now
#sqrt3 i-1=-1+sqrt3 i# here x = -1 and y =
#sqrt3#
#rArrr=sqrt((-1)^2+(sqrt3)^2)=sqrt4=2# and
#theta=tan^-1(-sqrt3)=-pi/3#
#-1+sqrt3 i" is in the 2nd quadrant"# so
#theta" requires to be an angle in 2nd quadrant"#
#rArrtheta=(pi-pi/3)=(2pi)/3#
#rArr(-1,sqrt3)=(2,(2pi)/3)#