How do you convert #( 3x , -3y )# into polar coordinates? Precalculus Polar Coordinates Converting Coordinates from Polar to Rectangular 1 Answer Trevor Ryan. Nov 13, 2015 #3sqrt(x^2+y^2)/_tan^(-1)(-y/x)# Explanation: #r=sqrt((3x)^2+(-3y)^2)=sqrt(9(x^2+y^2))=3sqrt(x^2+y^2)# #theta=tan^(-1)((-3y)/(3x))=tan^(-1)(-y/x)# Therefore the polar co-ordinates are #3sqrt(x^2+y^2)/_tan^(-1)(-y/x)# Answer link Related questions What is the formula for converting polar coordinates to rectangular coordinates? How do I convert polar coordinates #(5, 30^circ)# to rectangular coordinates? How do I convert polar coordinates #(3.6, 56.31)# to rectangular coordinates? How do I convert polar coordinates #(10, -pi/4)# to rectangular coordinates? How do I convert polar coordinates #(4,-pi/3)# to rectangular coordinates? How do I convert polar coordinates #(6, 60^circ)# to rectangular coordinates? How do I convert polar coordinates #(-4, 230^circ)# to rectangular coordinates? What is the Cartesian equivalent of polar coordinates #(sqrt97, 66^circ)#? What is the Cartesian equivalent of polar coordinates #(2, pi/6)#? What is the Cartesian equivalent of polar coordinates #(7, pi)#? See all questions in Converting Coordinates from Polar to Rectangular Impact of this question 3698 views around the world You can reuse this answer Creative Commons License