How do you convert #( -2x , -2y )# into polar coordinates? Precalculus Polar Coordinates Converting Coordinates from Polar to Rectangular 1 Answer Gaya3 Oct 14, 2017 For #r#: #r^2=x^2+y^2# #r^2=(-2x)^2+(-2y)^2# #r^2=4x^2+4y^2# #r=2sqrt(x^2+y^2)# For #theta#: #theta=tan^(-1)(y/x)# #theta=tan^-1 ((cancel(-2)y)/(cancel(-2)x))# #theta=tan^-1 (y/x)# Answer link Related questions What is the formula for converting polar coordinates to rectangular coordinates? How do I convert polar coordinates #(5, 30^circ)# to rectangular coordinates? How do I convert polar coordinates #(3.6, 56.31)# to rectangular coordinates? How do I convert polar coordinates #(10, -pi/4)# to rectangular coordinates? How do I convert polar coordinates #(4,-pi/3)# to rectangular coordinates? How do I convert polar coordinates #(6, 60^circ)# to rectangular coordinates? How do I convert polar coordinates #(-4, 230^circ)# to rectangular coordinates? What is the Cartesian equivalent of polar coordinates #(sqrt97, 66^circ)#? What is the Cartesian equivalent of polar coordinates #(2, pi/6)#? What is the Cartesian equivalent of polar coordinates #(7, pi)#? See all questions in Converting Coordinates from Polar to Rectangular Impact of this question 2536 views around the world You can reuse this answer Creative Commons License