How do you convert 1/sqrt2 - (i)(1/sqrt2)12(i)(12) to polar form?

1 Answer
Apr 21, 2018

The polar form is =(cos(-pi/4)+isin(-pi/4))=(cos(π4)+isin(π4))

Explanation:

The polar form of a complex number

z=a+ibz=a+ib

is

z=r(costheta+isin theta)z=r(cosθ+isinθ)

Where,

r=|z|=sqrt(a^2+b^2)r=|z|=a2+b2

costheta=a/(|z|)cosθ=a|z|

and

sintheta=b/(|z|)sinθ=b|z|

Here, we have

z=1/sqrt2-i1/sqrt2z=12i12

|z|=sqrt((1/sqrt2)^2+(1/sqrt2)^2)=1|z|=(12)2+(12)2=1

{(costheta=1/sqrt2),(sintheta=-1/2):}

<=>, theta=-pi/4, [mod 2pi]

Therefore,

z=(cos(-pi/4)+isin(-pi/4))