How do you condense #log_2 4+ 3log_2 9#?

1 Answer
Oct 12, 2016

#log_2(4)+3log_2(9)=log_2(2916)~~11.5#

Explanation:

We will use the following properties of logarithms:

  • #xlog_a(b) = log_a(b^x)#
  • #log_a(x)+log_a(y) = log_a(xy)#

With those, we have

#log_2(4)+3log_2(9) = log_2(4)+log_2(9^3)#

#=log_2(4*9^3)#

#=log_2(2916)#