How do you condense 1/3log_(2)27 - log_(2)9 13log227log29?

1 Answer
May 18, 2016

- log3/log 2=-ln 3/ln 2=-1.585log3log2=ln3ln2=1.585, nearly.

Explanation:

Use log_b (m/n)=log_b m - log_b n, nlog_b a =log_b(a^n)logb(mn)=logbmlogbn,nlogba=logb(an) and

log_b a = log a/log b = ln a/ln blogba=logalogb=lnalnb.

Here, (1/3)log_2 27-log_2 9=log_2(27^(1/3)) - log_2 9(13)log227log29=log2(2713)log29

=log_2 3 - log_2 9=log_2(3/9)=log_2(1/3)=log23log29=log2(39)=log2(13)

=-log_2 3=-log 3/log 2=-ln 3/ln 2=-1.585=log23=log3log2=ln3ln2=1.585, nearly