How do you calculate sin(2sin^-1(10x))? Trigonometry Inverse Trigonometric Functions Inverse Trigonometric Properties 1 Answer Antoine Jul 3, 2015 sin(2sin^(-1)(10x))=20xsqrt(1-100x^2) Explanation: "Let " y=sin(2sin^(-1)(10x)) Now, let " "theta=sin^(-1)(10x)" "=>sin(theta)=10x =>y=sin(2theta)=2sinthetacostheta Recall that: " "cos^2theta=1-sin^2theta=>costheta=sqrt(1-sin^2theta) =>y=2sinthetasqrt(1-sin^2theta) =>y=2*(10x)sqrt(1-(10x)^2)=color(blue)(20xsqrt(1-100x^2)) Answer link Related questions How do you use the properties of inverse trigonometric functions to evaluate tan(arcsin (0.31))? What is \sin ( sin^{-1} frac{sqrt{2}}{2})? How do you find the exact value of \cos(tan^{-1}sqrt{3})? How do you evaluate \sec^{-1} \sqrt{2} ? How do you find cos( cot^{-1} sqrt{3} ) without a calculator? How do you rewrite sec^2 (tan^{-1} x) in terms of x? How do you use the inverse trigonometric properties to rewrite expressions in terms of x? How do you calculate sin^-1(0.1)? How do you solve the inverse trig function cos^-1 (-sqrt2/2)? How do you solve the inverse trig function sin(sin^-1 (1/3))? See all questions in Inverse Trigonometric Properties Impact of this question 2398 views around the world You can reuse this answer Creative Commons License