How do you calculate [NO_3^(-)] if 120 mL of 0.40 M KNO_3 is mixed with 400 mL of 1.2 M Pb(NO_3)_2?
1 Answer
I got
First, it helps to write out each process:
"KNO"_3(aq) -> "K"^(+)(aq) + "NO"_3^(-)(aq)
"Pb"("NO"_3)_2(aq) -> "Pb"^(2+)(aq) + 2"NO"_3^(-)(aq)
Therefore, for each mol of
If you recall, the
("0.40 M KNO"_3 xx "0.120 L")(("1 mols NO"_3^(-))/("1 mol KNO"_3)) = "0.048 mols NO"_3^(-) from"KNO"_3
("1.20 M Pb"("NO"_3)_2 xx "0.400 L")(("2 mols NO"_3^(-))/("1 mol Pb"("NO"_3)_2))
= "0.960 mols NO"_3^(-) from"Pb"("NO"_3)_2
The total
"0.048 mols" + "0.960 mols" = "1.008 mols NO"_3^(-)
and the concentration is:
color(blue)(["NO"_3^(-)]) = ("1.008 mols NO"_3^(-))/("0.120 + 0.400 L")
= color(blue)("1.94 M")
Another way to do this is to recognize that since molarity is written as
So, you could just calculate the new molarities of
("0.120 L")("0.400 M") = (M_2)("0.120 + 0.400 L")
=> M_(2a) = "0.092 M NO"_3^(-) from"KNO"_3
(("2 mols NO"_3^(-))/("1 mol Pb"("NO"_3)_2))("0.400 L")("1.20 M") = (M_2)("0.120 + 0.400 L")
=> M_(2b) = "1.85 M NO"_3^(-) from"Pb"("NO"_3)_2
Therefore:
M_2 = color(blue)(["NO"_3^(-)])
= (n_("NO"_3^(-),a))/(V_"tot") + (n_("NO"_3^(-),b))/(V_"tot")
= M_(2a) + M_(2b)
= 0.092 + 1.85 "M"
= color(blue)("1.94 M")