How do you calculate log 1300log1300?

1 Answer
May 20, 2017

log 1300 ~~ 3.1139434log13003.1139434

Explanation:

Suppose you know:

log 2 ~~ 0.30103log20.30103

ln 10 ~~ 2.302585ln102.302585

Then:

1300 = 10*2*65 = 10*2*64*65/64 = 10*2^7*(1+1/64)1300=10265=102646564=1027(1+164)

So:

log 1300 = log (10*2^7*(1+1/64))log1300=log(1027(1+164))

color(white)(log 1300) = log 10 + 7 log 2 + log(1+1/64)log1300=log10+7log2+log(1+164)

color(white)(log 1300) = log 10 + 7 log 2 + ln(1+1/64)/ln 10log1300=log10+7log2+ln(1+164)ln10

Now:

ln(1+x) = x-x^2/2+x^3/3-x^4/4+...

So:

ln(1+1/64) = 1/64-1/(2*64^2)+1/(3*64^3)-1/(4*64^4)+...

color(white)(ln(1+1/64)) = 1/64-1/8192+1/786432-1/67108864+...

color(white)(ln(1+1/64)) ~~ 0.01550419

and:

log 1300 = log 10 + 7 log 2 + ln(1+1/64)/ln 10

color(white)(log 1300) ~~ 1 + 7*0.30103 + 0.01550419/2.302585

color(white)(log 1300) ~~ 3.1139434