How do you add (-8+4i) and (-3-3i) in trigonometric form?

1 Answer

sqrt(122)[cos(tan^-1(1/(-11)))+isin(tan^-1(1/(-11)))]" " "OR
sqrt(122)[cos(174.806^@)+isin(174.806^@)]" " "

Explanation:

Add (-8+4i) and (-3-3i) to obtain

-11+i

Use the formula

a+bi=sqrt(a^2+b^2)[cos(tan^-1 (b/a))+i*sin(tan^-1 (b/a)]

Let a=-11 and b=1

magnitude" " " "r=sqrt(a^2+b^2)=sqrt((-11)^2+1^2)=sqrt122

the angle theta=tan^-1 (1/(-11))=174.806^@

sqrt(122)[cos(tan^-1(1/(-11)))+isin(tan^-1(1/(-11)))]" " "OR
sqrt(122)[cos(174.806^@)+isin(174.806^@)]" " "

have a nice day... from the Philippines..