How do you add (7+4i)(7+4i) and (2+6i)(2+6i) in trigonometric form?

1 Answer
Jan 29, 2018

9+10i9+10i

Explanation:

If we have a complex number such that z=a+biz=a+bi, then z=r(costheta+isintheta)z=r(cosθ+isinθ), where:

  • r=sqrt(a^2+b^2)r=a2+b2
  • theta=tan^(-1)(b/a)θ=tan1(ba)

For z_1=7+4iz1=7+4i :
r=sqrt(7^2+4^2)=sqrt(49+16)=sqrt(65)r=72+42=49+16=65
theta=tan^(-1)(4/7)~~29.7θ=tan1(47)29.7
=sqrt(65)(cos(29.7)+isin(29.7))=65(cos(29.7)+isin(29.7))

For z_2=2+6iz2=2+6i :
r=sqrt(2^2+6^2)=sqrt(4+36)=sqrt(40)r=22+62=4+36=40
theta=tan^(-1)(6/2)~~71.6θ=tan1(62)71.6
=sqrt(40)(cos(71.6)+isin(71.6))=40(cos(71.6)+isin(71.6))

For z_1+z_2z1+z2 :
z_1+z_2=sqrt(65)cos(29.7)+isqrt(65)sin(29.7)+sqrt(40)cos(71.6)+isqrt(40)sin(71.6)z1+z2=65cos(29.7)+i65sin(29.7)+40cos(71.6)+i40sin(71.6)

color(white)(z_1+z_2)=sqrt(65)cos(29.7)+sqrt(40)cos(71.6)+i(sqrt(65)sin(29.7)+sqrt(40)sin(71.6))z1+z2=65cos(29.7)+40cos(71.6)+i(65sin(29.7)+40sin(71.6))

color(white)(z_1+z_2)=8.999470954+9.995734316iz1+z2=8.999470954+9.995734316i#

color(white)(z_1+z_2)~~9+10iz1+z29+10i

Proof:
7+4i+2+6i=(7+2)+i(4+6)=9+10i7+4i+2+6i=(7+2)+i(4+6)=9+10i