How do you add (-5-2i)+(7-6i) in trigonometric form?

1 Answer
Jul 15, 2017

(-5-2i) +(7-6i) = 2sqrt17(cos1.33-isin1.33)

Explanation:

(-5-2i)+(7-6i) = 2-8i

This can be written in trigonometric form as:

a+bi = r(cosvartheta + i sinvartheta) where r=sqrt (a^2+b^2) and vartheta = arctan(y/x)

sqrt(2^2+(-8)^2) = 2sqrt17

arctan(-8/2) = -1.33

therefore 2-8i = 2sqrt17(cos(-1.33) + isin(-1.33))

Using the properties of the sin and cos functions, this can be rewritten as:

2-8i=2sqrt17(cos1.33-isin1.33)