Let us first write #(2+8i)# and #(3+4i)# in trigonometric form.
#a+ib# can be written in trigonometric form #rcosthetaa+irsintheta=r(costhetaa+isintheta)#,
where #r=sqrt(a^2+b^2)# and #tantheta=b/a# or #theta=arctan(b/a)#
Hence #(2+8i)=sqrt(2^2+8^2)[cosalpha+isinalpha]# or
#sqrt68[cosalpha+isinalpha]#, where #alpha=arctan4# and
#(3+4i)=sqrt(3^2+4^2)[cosbeta+isinbeta]# or
#5[cosbeta+issinbeta]#, where #beta=arctan(4/3)#
Hence #(2+8i)+(3+4i)# =
#sqrt68[cosalpha+isinalpha]+5[cosbeta+issinbeta]#,
where #alpha=arctan4# and #beta=arctan(4/3)#.