How do you add #(1+6i)+(-3+i)# in trigonometric form?

1 Answer
Jun 25, 2018

#color(blue)(=> -2 + 7 i#

Explanation:

#z= a+bi= r (costheta+isintheta)#

#r=sqrt(a^2+b^2), " " theta=tan^-1(b/a)#

#r_1(cos(theta_1)+isin(theta_2))+r_2(cos(theta_2)+isin(theta_2))=r_1cos(theta_1)+r_2cos(theta_2)+i(r_1sin(theta_1)+r_2sin(theta_2))#

#r_1=sqrt(1^2+ 6^2))=sqrt 37#
#r_2=sqrt(-3^2+ 1^2) =sqrt 10#

#theta_1=tan^-1(6/1)~~ 80.54^@, " I quadrant"#
#theta_2=tan^-1(1/ -3)~~ 161.57^@, " II quadrant"#

#z_1 + z_2 = sqrt 37 cos(80.54) + sqrt 10 cos(161.57) + i (sqrt 37 sin 80.54 + sqrt 10 sin 161.57)#

#=> 1- 3 + i (6 + 1 )#

#color(blue)(=> -2 + 7 i#