To prove for #ABC#
#a=bcos(C)+c cos(B)# by using vector law.
Proof
Let us consider that three vectors #veca,vecb and vecc# are represented respectively in order by three sides #BC,CA andAB# of a #DeltaABC#.
This means
#vec(BC)=veca#
#vec(CA)=vecb#
#vec(AB)=vecc#
So we can write
#vec(BC)+vec(CA)+vec(AB)=0#
#=>veca+vecb+vec c=0#
#=>veca*(veca+vecb+vec c)=0#
#=>veca*veca+veca*vecb+veca*vec c=0#
#=>absvecaabsvecacos0^@+absvecaabsvecbcos(pi-C)+absvecaabsvecc cos(pi-B)=0#
#=>absvecaabsveca*1-absvecaabsvecbcos(C)-absvecaabsvecc cos(B)=0#
#=>absvecaabsveca=absvecaabsvecbcos(C)+absvecaabsvecc cos(B)#
#=>absveca=absvecbcos(C)+absvecc cos(B)#