How do solve (x-4)/(x^2+2x)<=0 and write the answer as a inequality and interval notation?

1 Answer
Dec 26, 2016

The answer is x<-2 or 0< x <=4
=x in ] -oo,-2 [ uu ] 0, 4]

Explanation:

Let's rewrite the inequality as

(x-4)/(x^2+2x)=(x-4)/(x(x+2))

And

Let f(x)=(x-4)/(x(x+2))

The domain of f(x) is D_f(x)=RR-{-2,0}

Now, we can make the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-2color(white)(aaaaaa)0color(white)(aaaaaa)4color(white)(aaaa)+oo

color(white)(aaaa)x+2color(white)(aaaa)-color(white)(aaa)color(white)(aa)+color(white)(aa)+color(white)(aaa)+

color(white)(aaaa)xcolor(white)(aaaaaaa)-color(white)(aaa)color(white)(aa)-color(white)(aa)+color(white)(aaa)+

color(white)(aaaa)x-4color(white)(aaaa)-color(white)(aaa)color(white)(aa)-color(white)(aa)-color(white)(aaa)+

color(white)(aaaa)f(x)color(white)(aaaaa)-color(white)(aaa)color(white)(aa)+color(white)(aa)-color(white)(aaa)+

Therefore,

f(x)<=0 when x in ] -oo,-2 [ uu ] 0, 4]

or, x<-2 or 0< x <=4