Let's rewrite the inequality as
(x-4)/(x^2+2x)=(x-4)/(x(x+2))
And
Let f(x)=(x-4)/(x(x+2))
The domain of f(x) is D_f(x)=RR-{-2,0}
Now, we can make the sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-2color(white)(aaaaaa)0color(white)(aaaaaa)4color(white)(aaaa)+oo
color(white)(aaaa)x+2color(white)(aaaa)-color(white)(aaa)∥color(white)(aa)+∥color(white)(aa)+color(white)(aaa)+
color(white)(aaaa)xcolor(white)(aaaaaaa)-color(white)(aaa)∥color(white)(aa)-∥color(white)(aa)+color(white)(aaa)+
color(white)(aaaa)x-4color(white)(aaaa)-color(white)(aaa)∥color(white)(aa)-∥color(white)(aa)-color(white)(aaa)+
color(white)(aaaa)f(x)color(white)(aaaaa)-color(white)(aaa)∥color(white)(aa)+∥color(white)(aa)-color(white)(aaa)+
Therefore,
f(x)<=0 when x in ] -oo,-2 [ uu ] 0, 4]
or, x<-2 or 0< x <=4